HRAP

CODE:2801-AG-FC-1-23-24

General Instructions:

1. This Question paper contains - five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA)-type questions of 2 marks each.
4. Section C has 6 Short Answer (SA)-type questions of 3 marks each.
5. Section D has 4 Long Answer (LA)-type questions of 5 marks each.
6. Section E has 3 source based/case based/passage based/integrated units of assessment (4 marks each) with sub parts.
7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2marks questions of Section E

EXAMINATION 2023-24

Time : 3 Hours
Maximum Marks : 80
CLASS - XI
MATHEMATICS

Sr. No.	SECTION - A This section comprises of very short answer type-questions (VSA) of 2 marks each	Ma rks
Q. 1	If $\cos A=m \cos B$, then (a) $\cot \frac{A+B}{2}=\frac{m+1}{m-1} \tan \frac{B-A}{2}$ (b) $\tan \frac{A+B}{2}=\frac{m+1}{m-1} \cot \frac{B-A}{2}$ (c) $\cot \frac{A+B}{2}=\frac{m+1}{m-1} \tan \frac{A-B}{2}$ (d) None of these	1
Q. 2	If $\frac{2 x-3}{4}+9 \geq 3+\frac{4 x}{3}$ then $x \in$ (a) $\left[-\infty, \frac{63}{10}\right]$ (b) $\left(-\infty, \frac{63}{10}\right)$ (c) $\left(-\infty, \frac{63}{10}\right]$ (d) $\left[\frac{63}{10}, \infty\right)$	1
Q. 3	If in a chess tournament each contest plays once against each of the others and in all 45 games are played, then the number of participants is (a) 9 (b) 10 (c) 15 (d) none of these	1
Q. 4	If the foci and vertices of an ellipse be $(\pm 1,0)$ and $(\pm 2,0)$, then the minor axis of the ellipse is (a) $2 \sqrt{5}$ (b) 2 (c) 4 (d) $2 \sqrt{3}$	1
Q. 5	If the $9^{\text {th }}$ term of an A.P. be zero, then the ratio of its $29^{\text {th }}$ and $19^{\text {th }}$ term is	1

	(a)1:2(b)2:1(c) $1: 3$ (d)3:1	
Q. 6	The centers of the circles $x^{2}+y^{2}=1, \quad x^{2}+y^{2}+6 x-2 y=1 \quad$ and $x^{2}+y^{2}-12 x+4 y=1$ are (a) Same (b) Collinear (c) Non-collinear (d) None of these	1
Q. 7	Two dice are thrown simultaneously. What is the probability of obtaining a multiple of 2 on one of them and a multiple of 3 on the other (a) $\frac{5}{36}$ (b) $\frac{11}{36}$ (c) $\frac{1}{6}$ (d) $\frac{1}{3}$	1
Q. 8	If the eccentricity of an ellipse be $5 / 8$ and the distance between its foci be 10 , then its latus rectum is (a) $39 / 4$ (b) 12 (c) 15 (d) $37 / 2$	1
Q. 9	$\sqrt{2+\sqrt{2+2 \cos 4 \theta}}=$ (a) $\cos \theta$ (b) $\sin \theta$ (c) $2 \cos \theta$ (d) $2 \sin \theta$	1
Q. 10	$\left\|(1+i) \frac{(2+i)}{(3+i)}\right\|=$ (a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 1 (d) -1	1
Q. 11	If a set A has n elements, then the total number of subsets of A is (a) n (b) n^{2} (c) 2^{n} (d) $2 n$	1
Q. 12	If the $5^{\text {th }}$ term of a G.P. is $\frac{1}{3}$ and $9^{\text {th }}$ term is $\frac{16}{243}$, then the $4^{\text {th }}$ term will be (a) $\frac{3}{4}$ (b) $\frac{1}{2}$ (c) $\frac{1}{3}$ (d) $\frac{2}{5}$	1
Q. 13	If distance between the directrices be thrice the distance between the foci, then eccentricity of ellipse is (a) $1 / 2$ (b) $2 / 3$ (c) $1 / \sqrt{3}$ (d) $4 / 5$	1
Q. 14	The value of $1^{2}+2^{2}+3^{2}+\ldots .+n^{2}=$ for all $n \in N$ (a) n^{2} (b) $\frac{n(n+1)(2 n-1)}{6}$ (c) $\frac{n(n+1)(2 n+1)}{6}$ (d) $\frac{n(n+1)}{2}$	1
Q. 15	If $A=\{1,2,3,4,5\}$, then the number of proper subsets of A (a) 120 (b) 30 (c) 31 (d) 32	1
Q. 16	If the variance of observations $x_{1}, x_{2}, \ldots \ldots x_{n}$ is σ^{2}, then the variance of $a x_{1}, a x_{2} \ldots \ldots ., a x_{n}, \alpha \neq 0$ is (a) σ^{2} (b) $a \sigma^{2}$ (c) $a^{2} \sigma^{2}$ (d) $\frac{\sigma^{2}}{a^{2}}$	1

Q. 17	The number of non-zero integral solutions of the equation $\|1-i\|^{x}=2^{x}$ is (a) Infinite(b)1(c)2(d)None of these	1
Q. 18	$n^{\text {th }}$ term of the series $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots .$. will be (a) $n^{2}+2 n+1$ (b) $\frac{n^{2}+2 n+1}{8}$ (c) $\frac{n^{2}+2 n+1}{4}$ (d) $\frac{n^{2}-2 n+1}{4}$	1
	ASSERTION-REASON BASED QUESTIONS In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true.	
Q. 19	Assertion (A) : $\operatorname{If}(x+a)^{6}$ is expanded then the number of terms are there is 7. Reason (R): Total number of term in the expansion $(x+a)^{n}$ is n .	1
Q. 20	Assertion (A) : A straight line through $P(1,2)$ is such that its intercept between the axes is bisected at P. Its equation is $2 x+y-4=0$. Reason (R): The length of perpendicular from $\mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ on $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is $\left\|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right\|$.	1
	SECTION - B This section comprises of very short answer type-questions (VSA) of 2 marks each	
Q. 21	If p is any real number and if the middle term in the expansion of $\left(\frac{p}{2}+2\right)^{8}$ is 1120 . evaluate p .	2
Q. 22	Solve the following equation: $\sqrt{3} x^{2}-\sqrt{2} x+3 \sqrt{3}=0$. OR Find real values of θ for which $\left(\frac{3+2 i \sin \theta}{1-2 i \sin \theta}\right)$ is purely real.	2
Q. 23	Differentiate the with respect to $\mathrm{x} \sqrt{\sin (2 x+3)}$	2
Q. 24	Let R be the relation on the set N of natural number defined by $R=\{(x, y): x+3 y=12 \& x, y \in N$. (i) Write R in the roster form. (ii) Find domain of R (ii) Find range of R . OR	2

	Let $\mathrm{A}=\{9,10,11,12,13\}$ and let $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{N}$ be defined by $\mathrm{f}(\mathrm{n})=$ the highest prime factor of n. Find the range of f.	
Q. 25	In the first four papers each of 100 marks. Rishi got $95,72,73,83$, marks. If he wants an average of greater than or equal to 75 marks and less than 80 marks, find the range of marks he should score in the fifth paper.	2
	SECTION - C (This section comprises of short answer type questions (SA) of $\mathbf{3}$ marks each)	
Q. 26	Find the probability that when a hand of 7 cards is drawn from a well shuffled deck of 52 cards, it contains (i) all Kings (ii) 3 Kings (iii) at least 3 Kings.	3
Q. 27	The slope of a line is double of the slope of another line. If tangent of the angle between them is $1 / 3$, find the slopes of the lines. OR Find the equation of the line passing through the points $(4,5)$ making equal angle with the lines $5 x-12 y+6=0$ and $3 x=4 y+7$.	3
Q. 28	Suppose $\quad \mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}2 a-3 b x & x\langle 3 \\ 4 & x=3 \\ 5 b-3 a x & x>3\end{array}\right\}$ and if $\begin{gathered}\lim _{x \rightarrow 3} f(x)=f(3) \text { what are }\end{gathered}$ possible value of a and b ?	3
Q. 29	A committee of 3 persons is to be constituted from a group of 2 men and 3 women. In how many ways can this be done? How many of these committees would consist of 1 man and 2 women? OR How many numbers greater than 1000 , but not greater than 4000 can be formed with the digits $0,1,2,3,4$, if (i) repetition of digits is allowed (ii) repetition of digits is not allowed.	3
Q. 30	Prove that: $\sin ^{4} \frac{\pi}{8}+\sin ^{4} \frac{3 \pi}{8}+\sin ^{4} \frac{5 \pi}{8}+\sin ^{4} \frac{7 \pi}{8}=\frac{3}{2}$	3
Q. 31	If x and y are any two distinct integers, then prove by using binomial that ($x^{n}-y^{n}$) is divisible by $(\mathrm{x}-\mathrm{y})$ for all $n \in N$. OR Prove by the principle of mathematical induction : $\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+\ldots+\frac{1}{(3 n-1)(3 n+2)}=\frac{n}{6 n+4} .$	3
	SECTION - D (This section comprises of long answer-type questions (LA) of 5 marks each)	
Q. 32	Find the domain and range of $f(x)=\sqrt{x^{2}-16}$. OR A college warded 38 medals in football, 15 in basketball and 20 in cricket. If these	5
Target Mathematics by- Dr.Agyat Gupta visit us: agyatgupta.com ; Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony Ph. : 4063585(O), 7000636110(O) Mobile : $\underline{9425109601(P) ~}$		

	conjugate complex can be (a) $(-2,-1)$ or $(2,-1)($ b) $(-1,2)$ or $(-2,1)($ c) $(1,2)$ or $(-1,-2)$ (d)None of these OR The real values of x and y for which the equation $\left(x^{4}+2 x i\right)-\left(3 x^{2}+y i\right)=(3-5 i)+(1+2 y i)$ is satisfied, are (a) $x=2, y=3$ (b) $\quad x=-2, y=\frac{1}{3}$ (c)Both (a) and (b) (d) None of these	
Q. 38	Case Study based-3 If the point $(2,3)$ is the focus and $x=2 y+6$ is the directrix of a parabola, find	
i.	The equation of the axis	1
ii.	The co-ordinates of the vertex	1
iii	Length of the latus rectum OR Equation of the latus rectum	2

89, LAXMI BAI COLONY, PADAV GWALIOR (IM.P.) Mob. 9425109601,7000636110

Visit us @: www.agyatgupta.com, E-Mail us @: agyat99@gmail.com

